Karpenter is a powerful tool that automates node provisioning in Kubernetes clusters. By dynamically scaling your cluster based on pod scheduling needs, Karpenter ensures optimal resource utilization and efficient application deployment. This blog post will guide you through installing Karpenter, configuring it, and exploring real-world use cases.
Table of Contents:
- What is Karpenter?
- Benefits of Using Karpenter
- Prerequisites
-
Setting up a Kubernetes Cluster
- 4.1 Installing Required Utilities
- 4.2 Setting Environment Variables
- 4.3 Creating a Kubernetes Cluster with eksctl
- 4.4 Deploying Karpenter with Helm
-
Using Karpenter
- 5.1 Creating a Provisioner
- 5.2 Scaling Pods and Node Provisioning
- Monitoring Karpenter with Grafana and Prometheus
- Cleaning Up
- Use-Case
- Conclusion
What is Karpenter?
Karpenter is an open-source project that extends Kubernetes by automatically provisioning nodes to accommodate unschedulable pods. It observes events within the cluster and interacts with the underlying cloud provider to provision new nodes when needed.
Benefits of Using Karpenter
- Automatic node provisioning: Karpenter eliminates the need for manual scaling of your Kubernetes cluster by automatically provisioning nodes based on pod demands.
- Efficient resource utilization: Karpenter optimizes resource allocation by dynamically scaling the cluster to match workload requirements, avoiding overprovisioning or underutilization.
- Seamless integration: Karpenter integrates seamlessly with existing Kubernetes workflows and leverages standard Kubernetes APIs and controllers.
- Support for spot instances: Karpenter supports spot instances on cloud providers like AWS, allowing you to take advantage of cost savings while maintaining high availability.
Prerequisites:
Before getting started with Karpenter, ensure that you have the following prerequisites:
- AWS CLI
- kubectl
- eksctl
- Helm
Setting up a Kubernetes Cluster
To use Karpenter, you need a supported Kubernetes cluster on a supported cloud provider. In this guide, we’ll focus on setting up a cluster using AWS Elastic Kubernetes Service (EKS).
To use Karpenter, you must be running a supported Kubernetes cluster on a supported cloud provider. Currently, only EKS on AWS is supported.
Installing Required Utilities:
Install the necessary utilities, including AWS CLI, kubectl, eksctl, and Helm.
Setting Environment Variables
Set environment variables to specify the
- Karpenter version,
- cluster name,
- AWS region,
- AWS account ID, and
- temporary file.
export KARPENTER_VERSION=v0.27.5 |
export CLUSTER_NAME=”${USER}-karpenter-demo” export AWS_DEFAULT_REGION=”us-west-2″ export AWS_ACCOUNT_ID=”$(aws sts get-caller-identity –query Account –output text)” export TEMPOUT=$(mktemp) |
NOTE:
Warning
If you open a new shell to run steps in this procedure, you need to set some or all of the environment variables again.
echo $KARPENTER_VERSION $CLUSTER_NAME $AWS_DEFAULT_REGION $AWS_ACCOUNT_ID $TEMPOUT |
Creating a Kubernetes Cluster with eksctl
Use eksctl to create a Kubernetes cluster on AWS EKS.
This step sets up the infrastructure, service accounts, and IAM roles required by Karpenter.
-
Use eksctl with CloudFormation:
- eksctl simplifies the process of creating Kubernetes clusters on AWS EKS. By using eksctl with CloudFormation, you can easily set up the necessary infrastructure for your EKS cluster.
-
Create Kubernetes Service Account and IAM Role:
- To enable Karpenter to launch instances, you need to create a Kubernetes service account and an AWS IAM Role. These two entities will be associated using IRSA (IAM Roles for Service Accounts).
-
Add Karpenter Node Role to aws-auth Configmap:
- In order to allow nodes to connect to the cluster, you need to add the Karpenter node role to the aws-auth configmap. This step ensures that nodes can join and participate in the cluster.
-
Choose Node Group Configuration:
- By default, the configuration uses AWS EKS managed node groups for the kube-system and karpenter namespaces. If you prefer to use Fargate for both namespaces instead, you can modify the configuration accordingly.
-
Set KARPENTER_IAM_ROLE_ARN:
- To leverage spot instances with Karpenter, you need to set the KARPENTER_IAM_ROLE_ARN variable. This variable specifies the IAM role that will be used for launching spot instances.
# Deploying CloudFormation Stack for Karpenter curl -fsSL “https://karpenter.sh/${KARPENTER_VERSION}/getting-started/getting-started-with-karpenter/cloudformation.yaml” > “$TEMPOUT” aws cloudformation deploy \ –stack-name “Karpenter-${CLUSTER_NAME}” \ –template-file “${TEMPOUT}” \ –capabilities CAPABILITY_NAMED_IAM \ –parameter-overrides “ClusterName=${CLUSTER_NAME}” # Creating EKS Cluster with eksctl cat <<EOF | eksctl create cluster -f – apiVersion: eksctl.io/v1alpha5 kind: ClusterConfig metadata: name: ${CLUSTER_NAME} region: ${AWS_DEFAULT_REGION} version: “1.24” tags: karpenter.sh/discovery: ${CLUSTER_NAME} iam: withOIDC: true serviceAccounts: – metadata: name: karpenter namespace: karpenter roleName: ${CLUSTER_NAME}-karpenter attachPolicyARNs: – arn:aws:iam::${AWS_ACCOUNT_ID}:policy/KarpenterControllerPolicy-${CLUSTER_NAME} roleOnly: true iamIdentityMappings: – arn: “arn:aws:iam::${AWS_ACCOUNT_ID}:role/KarpenterNodeRole-${CLUSTER_NAME}” username: system:node:{{EC2PrivateDNSName}} groups: – system:bootstrappers – system:nodes managedNodeGroups: – instanceType: m5.large amiFamily: AmazonLinux2 name: ${CLUSTER_NAME}-ng desiredCapacity: 2 minSize: 1 maxSize: 10 ## Optionally run on fargate # fargateProfiles: # – name: karpenter # selectors: # – namespace: karpenter EOF # Exporting Cluster Endpoint and Karpenter IAM Role ARN export CLUSTER_ENDPOINT=”$(aws eks describe-cluster –name ${CLUSTER_NAME} –query “cluster.endpoint” –output text)” export KARPENTER_IAM_ROLE_ARN=”arn:aws:iam::${AWS_ACCOUNT_ID}:role/${CLUSTER_NAME}-karpenter” echo $CLUSTER_ENDPOINT $KARPENTER_IAM_ROLE_ARN |
-
Create Role for Spot Instances:
- Next, create an IAM role that grants the necessary permissions for Karpenter to utilize spot instances effectively. This role ensures smooth integration and utilization of spot instances within the cluster.
# aws iam create-service-linked-role –aws-service-name spot.amazonaws.com || true # If the role has already been successfully created, you will see: # An error occurred (InvalidInput) when calling the CreateServiceLinkedRole operation: Service role name AWSServiceRoleForEC2Spot has been taken in this account, please try a different suffix. |
Install Karpenter with Helm:
# Logout of docker to perform an unauthenticated pull against the public ECR docker logout public.ecr.aws helm upgrade –install karpenter oci://public.ecr.aws/karpenter/karpenter –version ${KARPENTER_VERSION} –namespace karpenter –create-namespace \ –set serviceAccount.annotations.”eks\.amazonaws\.com/role-arn”=${KARPENTER_IAM_ROLE_ARN} \ –set settings.aws.clusterName=${CLUSTER_NAME} \ –set settings.aws.defaultInstanceProfile=KarpenterNodeInstanceProfile-${CLUSTER_NAME} \ –set settings.aws.interruptionQueueName=${CLUSTER_NAME} \ –set controller.resources.requests.cpu=1 \ –set controller.resources.requests.memory=1Gi \ –set controller.resources.limits.cpu=1 \ –set controller.resources.limits.memory=1Gi \ –wait |
Using Karpenter:
Now that Karpenter is set up, let’s explore how to use it to automatically provision nodes and scale pods.
-
Creating a Provisioner:
- Create a provisioner that defines the capacity and constraints for node provisioning. This step ensures that Karpenter provisions nodes based on the resource requirements of the pods.
cat <<EOF | kubectl apply -f – apiVersion: karpenter.sh/v1alpha5 kind: Provisioner metadata: name: default spec: requirements: – key: karpenter.sh/capacity-type operator: In values: [“spot”] limits: resources: cpu: 1000 providerRef: name: default ttlSecondsAfterEmpty: 30 — apiVersion: karpenter.k8s.aws/v1alpha1 kind: AWSNodeTemplate metadata: name: default spec: subnetSelector: karpenter.sh/discovery: ${CLUSTER_NAME} securityGroupSelector: karpenter.sh/discovery: ${CLUSTER_NAME} EOF |
-
Scaling Pods and Node Provisioning:
- With the provisioner in place, you can now scale pods and let Karpenter automatically provision nodes as needed. You can specify resource requests and limits for pods, and Karpenter will ensure that the required nodes are provisioned to accommodate them.
Scale up deployment
This deployment uses the pause image and starts with zero replicas.
cat <<EOF | kubectl apply -f – apiVersion: apps/v1 kind: Deployment metadata: name: inflate spec: replicas: 0 selector: matchLabels: app: inflate template: metadata: labels: app: inflate spec: terminationGracePeriodSeconds: 0 containers: – name: inflate image: public.ecr.aws/eks-distro/kubernetes/pause:3.7 resources: requests: cpu: 1 EOF kubectl scale deployment inflate –replicas 5 kubectl logs -f -n karpenter -l app.kubernetes.io/name=karpenter -c controller |
Monitoring Karpenter with Grafana and Prometheus
To monitor the performance and resource utilization of Karpenter, you can set up Grafana and Prometheus. These tools provide insights into the cluster’s resource usage, node provisioning, and pod scheduling.
helm repo add grafana-charts https://grafana.github.io/helm-charts helm repo add prometheus-community https://prometheus-community.github.io/helm-charts helm repo update kubectl create namespace monitoring curl -fsSL https://karpenter.sh/”${KARPENTER_VERSION}”/getting-started/getting-started-with-karpenter/prometheus-values.yaml | tee prometheus-values.yaml helm install –namespace monitoring prometheus prometheus-community/prometheus –values prometheus-values.yaml curl -fsSL https://karpenter.sh/”${KARPENTER_VERSION}”/getting-started/getting-started-with-karpenter/grafana-values.yaml | tee grafana-values.yaml helm install –namespace monitoring grafana grafana-charts/grafana –values grafana-values.yaml |
Cleanup
Delete Karpenter nodes manually
If you delete a node with kubectl, Karpenter will gracefully cordon, drain, and shutdown the corresponding instance.
When you’re done experimenting with Karpenter, it’s important to clean up any resources to avoid unnecessary costs. This involves deleting the Kubernetes cluster, Karpenter deployment, and any associated resources.
kubectl delete node $NODE_NAME |
Use-Case:
Here’s an example of a web application and database use-case with Karpenter on Kubernetes. In this scenario, we will deploy a simple web application using a microservice architecture, along with a backend database. Karpenter will be used to provision and scale the required pods and nodes in the Kubernetes cluster.
Define the Application Components
- Let’s start by defining the application components. We’ll have a frontend web service, a backend API service, and a database service.
# frontend-service.yaml apiVersion: v1 kind: Service metadata: name: frontend-service spec: selector: app: frontend ports: – protocol: TCP port: 80 targetPort: 80 — # frontend-deployment.yaml apiVersion: apps/v1 kind: Deployment metadata: name: frontend-deployment spec: replicas: 3 selector: matchLabels: app: frontend template: metadata: labels: app: frontend spec: containers: – name: frontend image: myapp/frontend:latest ports: – containerPort: 80 — # api-service.yaml apiVersion: v1 kind: Service metadata: name: api-service spec: selector: app: api ports: – protocol: TCP port: 80 targetPort: 80 — # api-deployment.yaml apiVersion: apps/v1 kind: Deployment metadata: name: api-deployment spec: replicas: 3 selector: matchLabels: app: api template: metadata: labels: app: api spec: containers: – name: api image: myapp/api:latest ports: – containerPort: 80 — # database-service.yaml apiVersion: v1 kind: Service metadata: name: database-service spec: selector: app: database ports: – protocol: TCP port: 5432 targetPort: 5432 — # database-statefulset.yaml apiVersion: apps/v1 kind: StatefulSet metadata: name: database-statefulset spec: replicas: 1 serviceName: database-service selector: matchLabels: app: database template: metadata: labels: app: database spec: containers: – name: database image: myapp/database:latest ports: – containerPort: 5432 |
Provision and Scale Pods and Nodes using Karpenter
- Now, let’s deploy Karpenter to provision and scale the pods and nodes dynamically based on the workload.
# Install Karpenter using Helm helm repo add karpenter https://awslabs.github.io/karpenter/charts helm install karpenter karpenter/karpenter # Create a Provisioner for Frontend Deployment kubectl apply -f – <<EOF apiVersion: provisioning.karpenter.sh/v1alpha3 kind: Provisioner metadata: name: frontend-provisioner spec: constraints: labels: app: frontend template: spec: replicas: 3 template: spec: containers: – name: frontend resources: requests: cpu: 200m memory: 256Mi volumeMounts: – mountPath: /data name: frontend-persistent-storage volumes: – name: frontend-persistent-storage emptyDir: {} EOF # Create a Provisioner for API Deployment kubectl apply -f – <<EOF apiVersion: provisioning.karpenter.sh/v1alpha3 kind: Provisioner metadata: name: api-provisioner spec: constraints: labels: app: api template: spec: replicas: 3 template: spec: containers: – name: api resources: requests: cpu: 200m memory: 256Mi EOF |
Monitor Karpenter with Grafana and Prometheus
- To monitor the provisioning and scaling activities performed by Karpenter, we can use Grafana and Prometheus.
# Install Prometheus and Grafana using Helm helm repo add prometheus-community https://prometheus-community.github.io/helm-charts helm install prometheus prometheus-community/kube-prometheus-stack # Forward Grafana port to localhost kubectl port-forward service/prometheus-grafana –namespace prometheus 3000 # Access Grafana dashboard at http://localhost:3000 # Configure Prometheus as a datasource in Grafana |
Clean Up
- To clean up the resources created, you can delete the Kubernetes objects and uninstall Karpenter and other components
# Delete the application components kubectl delete -f frontend-service.yaml kubectl delete -f frontend-deployment.yaml kubectl delete -f api-service.yaml kubectl delete -f api-deployment.yaml kubectl delete -f database-service.yaml kubectl delete -f database-statefulset.yaml # Uninstall Karpenter using Helm helm uninstall karpenter # Uninstall Prometheus and Grafana using Helm helm uninstall prometheus |
Conclusion
Karpenter is a powerful tool that simplifies the scaling of Kubernetes clusters by automating node provisioning. It optimizes resource utilization and seamlessly integrates with existing Kubernetes workflows. By following the steps outlined in this blog, you can harness the power of Karpenter to efficiently manage your workloads and ensure high availability in your Kubernetes environment.
Leave a Reply